Operational Excellence in Healthcare

Ronald J.M.M. Does

Institute for Business and Industrial Statistics, Amsterdam Business School, University of Amsterdam

Email: r.j.m.m.does@uva.nl

October 27, 2015

IBIS UvA: many hospitals are clients

Healthcare Quality

Observations

- Worldwide the cost of medical care is increasing at an alarming and unsustainable rate
- A significant part of the increase in healthcare cost can be characterized as operational inefficiency.
- Outdated (pre-industrial) organizational structures
- New expensive treatments and procedures
- An aging population
- Competition and Globalization (e.g. medical tourism, services that can be performed remotely, low-cost competitors, retail healthcare)

Top Level Definition of Quality: Fitness of Use

Subsidiary Definitions of Quality:

- Features: Typically cost more
- Freedom from Deficiencies: Typically cost less

Improving Quality and Reducing Costs

Effective Healthcare: Two Parts

The medical profession has done <u>extremely</u> well on issue #1. We have done less well on issue #2.

Effective Healthcare Delivery

Remedies

- Improving the quality and safety of care
- Reducing the direct cost of care
- Improving the efficiency of healthcare administration, logistics and the operational side of the healthcare delivery system
- Make affordable medical services available to a larger segment of the population

Healthcare can learn from how other industries and sectors of the economy have dealt with competition, market pressures and change

- 1. Transcendent approach of philosophy
- 2. Product-based approach of economics
- 3. User (client)-based approach of economics, marketing, and operations management
- 4. Manufacturing-based approach
- 5. Value-based approach of operations management

An organization should cultivate all five approaches

The Special Position of the Patient

Process Improvement in Healthcare

Process management

Ishikawa

Taylor

Gantt

Design for Six Sigma (2000–) Design for Lean Six Sigma (2008–)

Lean, Six Sigma, BPM, Workflow management (1990–)

TQM, BPR (1980-2000)

Quality and process control (1920–1950)

Scientific management (1880–1920)

Process management

Demino

Juran

Process Improvement in Healthcare

Lean Six Sigma

Projects run by people with understanding of the process and problem at hand

Problems are defined in a crystal clear, operational form

Emphasis on quantification

Data-based diagnosis and testing of ideas and improvement actions

How to organize process improvement?

Bottom-up: kaizen, short-cyclic improvement, PDCA, 8D, etc

- Small initiatives driven by the work floor.
- Advantages: creates awareness, involvement of employees, and a change of attitude on the work floor.
- Challenge: difficult to address the big fish; initiative derails in a multitude of trivialities. Difficult to address sensitive problems and carry through unpopular measures (change within the comfort-zone).

Top-down: business process reengineering

- Driven by experts, staff departments, or external consultants.
- Advantages: design optimal process without the weight of history; decisiveness and focus on the big fish.
- Challenges: Acceptance (employees may feel alienated or not recognized). Experts may have a sterile perception, and miss the devilish details and stubborn complications of daily reality.

How to organize process improvement?

Bottom-up: execution with top-down control: DMAIC

- Projects proposed and executed by GB/BBs from the work floor, but ratified and reviewed by champions and program managers steering at the big fish.
- DMAIC projects analyze and improve the process, ensuring that its basic structure and configuration are good. (YB)
- The Control stage lays down structures for continuous improvement. (OB)

Projects and execution

Project definition

Project execution: 9 templates for the first steps.

Type 2: Reduce costs by improving productivity of personnel

Type 3: Reduce costs by improving purchasing processes Strategic focal point Project objective Improve effectiveness Improve efficiency of nurchasing of nurchasing rchase price Type 6: Reduce costs by reducing inventory Strategic focal point Project objective Avoid out-of-stock Reducing inventor occurrences

Examples: projects with impact

Projects w.r.t. Fte reduction:

- Salaries hospital 2009: 287 million dollars; 6430 Fte's
- Mobility in personnel 2009: about 550 Fte's.
- Recording of processing times reveals insight in the activities (e.g. in one of the units 38,5% of the available time was not spent on the patients).
- Almost 50% of the projects within services has to deal with Fte reduction.
- Reference: Wijma et al. (2009), Quality Engineering 21, 222-228.

Projects w.r.t. Length of Stay:

- About 30% of the Length of Stay in a hospital is due to an inappropriate discharge procedure.
- Reducing the inappropriate stay by 50% means 15% extra admissions or closing beds.
- Reference: Niemeijer et al. (2010), Journal of Trauma 69(3), 614-619.

Examples: projects with a big impact

Projects w.r.t. use of materials:

- Costs of medicines in an academic hospital in 2009: 18 million euros.
- Reduction with 5% is almost 1 million euros.
- Example: the difference in price of the use of antibiotics with or without infusion is substantial.
- Reference: Van den Heuvel et al. (2004), *Quality and Reliability Engineering International* **20**, 419-426.

Projects w.r.t. optimal use of facilities:

- A CT scan takes about 6 minutes. This means that one may run 10 CT scans per hour.
- In most hospital the average number of CT scans per hour is about 3 to 4.
- Hence doubling is possible!

19

• Reference: De Mast et al. (2011), *Quality and Reliability Engineering International* **27**, 1095-1106..

Maturity grid of Lean Six Sigma

This material is intellectual property of the Institute for Business and Industrial Statistics of the University of Amsterdam (IBIS UvA)

http://www.ibisuva.nl.