Quality Assurance and Prevention of Problems

October 26th, 2015

Kazuyuki SUZUKI Department of Informatics University of Electro-Communications, Tokyo

©K.Suzuki 2015 1

Three Es of Quality Assurance

- 1. Establish "Process" to satisfy customers' needs
 - -Grasp the needs of costumers and society
 - Develop the products/service based on the needs
 - Establish the process to satisfy customers' and society's needs
- 2. Execution of the process and Verification & Validation
 - Satisfy the specification and standard
 - Satisfy the needs of costumer and society at Genba
 - Continuously grasping and checking the satisfaction
 - Implement PDCA
- 3. Evidence for the third party
 - Clarify and satisfy the needs of customer and society
 - Make the documents of its contract
 - Show the evidence of that the needs of customers and a society are fulfilled and give them the confidence ³ ©K.Suzuki 2015

Fig 2. Verification for Specifications and Validation for Customer Needs Kume, H.(2014), ed. By Kazuyuki Suzuki, New Reliability Handbook, JUSE Press

quality management and reliability engineering

Fig 2. Verification for Specifications and Validation for Customer Needs Kume, H.(2014), ed. By Kazuyuki Suzuki, New Reliability Handbook, JUSE Press

Q1

What is the key to prevention? (防患于未然的关键是什么?)

Q1 What is the key to prevention?

"Prediction" --- Events that cannot be predicted cannot be prevented.

Q2

What problems must be avoided in your products/systems or research/education ? Q3 What problems must be avoided in your organization?

Fig. 3 Scheme for achieving reliability and safety

Prevention (What is important?) "Prediction" --- We cannot prevent problems that cannot be predicted.

Inductive Approach (归纳法)

By collecting information from the person in confrontation with a similar problem in the world, we can better predict future problems, possibly more than 90% of them.

Deductive Approach (演绎法)

From scientific theories and principles, a particular future problem will be predicted.

- "Up-stream management by top leadership" Inclusive (every department, employee, and group) Early stage discussion (e.g., building reliability & safety) "Seven Viewpoints"

©K. Suzuki 2014 **1**()

Activities on the spot: Prevent Problems Before They Occur

Change to new technologies, new materials, 5M1E...

Problems that cannot be predicted cannot be prevented.

- I. Attempt prediction
- II. Predict effectively and efficiently
- III. Share success experiences
- (1) Sharing of problem information beyond organization
- (2) Abstraction and generalization of respective problems / Implementation of PDCA cycle
- (3) Practical use of incident information
- (4) Use of seven viewpoints

Inductive Approach

(1) Sharing problem-related information beyond organizational boundaries

Classification

- a. have experienced
- b. have not experienced
- **b1.** have not experienced, but others have experienced
- b2 one organization has not experienced, but another organization has experienced
 b3. one industry has not experienced, but another industry has experienced
- **b4.** no person, organization, or industry has experienced.

Share information

 (2) Abstraction and generalization of respective problems / Implementation of PDCA cycle

Q. 5

B. 5. b

Subjective and the set of the set

Dec., 2006 USA

For countermeasure to the attack of terrorism, prepare cooling the core of nuclear reactor using Isolation Condenser(IC), 非常用復水器 Reactor Core Isolation Cooling system (RCIC) 隔離時冷却系 by hand, without electricity

http://astand.asahi.com/magazine/judiciary/ articles/2012012600008.html Ibmittal Guide

3H Issues *Henka*(Change) *Hajimete*(first time) *Hisashiburi*(after long absence) ---Dr. Kazuyuki Suzuki

(3) Utilizing incident information

(4) Seven Viewpoints:

(4) External stress: usage/environmental conditions

(4) External stress: usage/environmental conditions

Decrease loading stress by increasing *R* (curvature radius)

Fracture Mechanism: Ball Bearing Life

Foreign particles contaminate ball bearings

Loading stress leads to cracking.

Prevent contamination by using vacuum fusion

Stress(Usage, Environmental condition)			Failure Mechanism					Failur	e mode	ltem/	
Major division	Mi div	nor ision	Maj divisi	Major divisionMinor Phase IPhase IIPhase II		Material					
	H tempe	High emperature + Cre		(Plas Creep		s) Atomic diffusion	A void, grain boundary crack generating	settling, cl	rack, fracture	Spring, structure parts	
	Loading stress				Creep	(Plastics)	Atomic diffusion	crack generation	Settling, cracking, fractu		
						Creep brittleness	Crystal grain boundary bonding strength drop	Ductility drop	Cracking, fracturing	Cr-Mo steel	
		+			Stress relaxation		Support to change in	Relief of stress	Modification		
T T	time						Torm Repetition of heat	Accumulation of	Generation of residual stres	Tube wall of internal pressure	
Ĥ)	Racheting			stress load	strain	Modification, breakage	pipe	
nperature	loading		D		on v	Mear Metal)	Strength reduction, toughness fall	Material embrittlement	crack, fracture	steel materials, body centered cubic crystal(Ca,Mo,W Etc.), close packed hexagonal crystals(Zn,Ti,Mg etc)and their alloys.	
		Low-temperat stre	ow-temperature + loading. stress		Cold brittleness		(Plastics)	Strength reduction, toughness fall	Material embrittlement	Cracking, fracturing	Things (cellulose, vinyl chloride, etc.) that have high vitrification temperature and things (styrene, methyl methacrylate, urea-resin, etc.) that have ductility amorphous again and low at crystallinity.
			-		ontraction	Residual stress	Room Temperature cooling	Material hardening, contraction	Cracking, breakage	Resin	
						Freezing expansion	Volume expansion	Crack generation	Cracking, fracturing	Things that easily absorb moisture	
		High temperature + loading stress		Expansion ature + ress		Evaporation expansion	Volume expansion	Crack generation	Cracking, fracturing	Package product of electron device, solder	
						Popcorn phenomenon	Moisture evaporation	Expansion	-	Integrated circuits (packaged products)	
						Thermal sparkling	Moisture evaporation	Expansion	Exfoliation, cracking	Concrete	
High temperature + sr		ature + small		Thermal	l shock	lubrication impossible	Rapid increase friction	mechanical shutdown,			
			uoli					1	©K.Su	zuki 2015 22	

Stress(Usage, Environmental condition)			Failure Mechanism						Failure mode		ltem/	
Major division	Mino divisi	or ion	Maj divis	Major Minor division division		Phase I	Phase II Phase III		ase III	Material		
	High temperature +		Creep		(Plastics)		Atomic diffusion	A void, grain boundary crack generating	settling, cr	ack, fracture	Spring, structure parts	
	Loadi	ing	· ·		Creep		(Plastics)	Atomic diffusion	Avoid, grain boundary crack generation	Settling, cracking, fractu	-	
	stres	ss	css + unic			(Creep brittleness	Crystal grain boundary bonding strength drop	Ductility drop	Cracking, fracturing	Cr-Mo steel	
	+				Stress relaxati		ion	Support to change in form	Relief of stress	Modification Generation of residual stress	s	
Te	time			Racheting			Repetition of heat	Accumulation of	Modification, breakage	Tube wall of internal pressure		
mpera		со		d	(Metal)		strength reduction,	material embrittlem	crack	, fracture	Liberty ship	
t	low-		brittlen				toughness	ent			crystals(Zn,Ti,Mg etc)and their alloys.	
Jre	temper + loadi stres	emperature + loading stress			l brittleness		fall	Strength reduction, toughness fall	Material embrittlement	Cracking, fracturing	Things (cellulose, vinyl chloride, etc.) that have high vitrification temperature and things (styrene, methyl methacrylate, urea-resin, etc.) that have ductility amorphous	
				Co	ontraction		Residual stress	Room Temperature	Material hardening, contraction	Cracking, breakage	Resin	
						F	reezing expansion	Volume expansion	Crack generation	Cracking, fracturing	Things that easily absorb moisture	
					xpansion	Eva	aporation expansion	Volume expansion	Crack generation	Cracking, fracturing	Package product of electron device, solder	
	High temp loading		High temperature + loading stress		Poj		pcorn phenomenon	Moisture evaporation	Expansion	-	Integrated circuits (packaged products)	
						T	Thermal sparkling	Moisture evaporation	Expansion	Exfoliation, cracking	Concrete	
High tempera vibra		ture + small ion		I nermal Baki	ing	CK	lubrication impossible	Rapid increase friction	mechanical shutdown, destruction			

Table List of stress failure mechanism failure mode

Stress		Fai	ilure n	nechani	ism	Failure mode		Principles, laws of	Detection	Main indus-
Major division	Minor division	Major division	Minor division	Phase I	Phase II	Phase III	Item	failure occurrence	mode	try, fields
Temperat ure										
Stress										
Humidity										
Electronic field										
Gaseous contamina tion										
Special failure										
Optical radiation										
Fluid										
Special failure									CK Suzuki	2015 3/

[5] Kazuyuki Suzuki (2004): "principle and system of prevention before it happens", JUSE

4 External stress: usage/environmental conditions

Fig. 4 Seven viewpoints for prevention

What is Safety(安全)? [Professor I. Kuroda]

- "There is no safety in this world.
- There exist only potential hazards and the relating risks to them.
- Safety is a state in which there is no trouble; it is attained only by continually making efforts to prevent potential hazards.
- Without such efforts, even for just a second, safety disappears."

Hazard: [Hajime Makabe (2002)] The potential situation, factor and scenario which lead to harm and damage.

26

Hazard: The potential situation, factor or scenario which leads to harm or damage. Makabe(2010)

©K.Suzuki 2015

Path from Hazard to Effect

Fig. 5 Path from potential hazard to effect

6-1 Failure mode

"Failure mode" refers to generalized types of unfavorable phenomena or events that may affect system or product components. Failure modes are made abstract and general so that they can be used for predicting possible faults.

Ex.) Pipe; cracking, fracturing, and clogging --- nuclear power plants, drainpipe, blood vessels

"Error mode" Example; prohibited, with something on, omit, insufficient

abstract and general expression to alert for human's inappropriate action and deviation from rules · standards in order to prevent unfavorable behaviors during the use at work · in daily life.

Table 2. List of Failure Modes based on 27 Articles

Fracture	82	Slack	2
Crack	65	Electric discharge	2
Degradation	25	Delay	2
Surface Damage	21	Radiation injury	1
Thinning	19	Contamination	1
Deforming	18	Blister	1
Short circuit	16	Liquefy	1
Ignition Heat Emitting smoke	14	Decarbonization	1
Opening/Disconnection	11	No output	
Noise	9	Excessive output	
Dielectric breakdown Insulated degradation	7	Too little output	
Exfoliation	6	Output instability	
Omission	6	Vibration	
Fading/discoloration	4	Loss of function	
Insulated degradation	4		
Leak/short circuit	5	Total)	323

Table 4. Error Mode and Error

Error Mode	Error	Number
prohibited	utilization for other purpose, installation in the prohibited place, sleep near the source of heat, inappropriate (ignition/fuel/remodel), heating without using a specialized pan	33
with something on	Refueling without extinguishing fire, leaving a thing unattended with heat	19
insufficient	Insufficient cleaning, Insufficient ventilation	14
incomplete	Incomplete closing of a lid, utilization with breakdown/deterioration, incomplete repair	13
heat the prohibited thing	heat/dry towels with oil	11
non confirming	heat/dry without checking oil removal after washing towels	3
over durability	use with the state of being incomplete from	7
years	long use (from 11 to 27 years)	
excess	use over quantity of electricity	5
unstable	unstable installation place	3
blocking	blocking inlet port/exhaust port	3
	Total)	111

6-2 Top Event Mode

"Top Event Mode" refers to events that occur just before critical events or accidents, which effects should be avoided. Top Event Modes are extracted from a sequence of occurrences and generalized and unified so that they can be used to analyze various systems, products, and constructions.

a nuclear power plant: all power supply loss→melting vehicle: sudden start forward moving against backward moving → collision with a human combustion apparatus: combustion · ignition · abnormal combustion → fire airplane: halt every engine · out of control → crash railroad (RR): 錯誤現示→collision 錯誤転換→collision 錯誤解錠→derailment

http://blogs.yahoo.co.jp/makinosike/21924903.html http://minkara.carview.co.jp/smart/userid/205631/car/94284/2733407/photo.aspx

Serious Product Accidents* [May 2007 - Jan. 2012]

[E1 misuse, E2 carelessness]

Product category	Top event mode
Combustion appliances** (79)***	
Home appliances** (32)	
Furniture/household articles (88)	
Vehicles/vehicle articles (46)	
Personal effects/items (25)	
Paint (3)	
Kitchen/table products (5)	
Infant articles (2)	
Leisure goods (7)	

Serious Product Accidents* [May 2007 - Jan. 2012]

[E1 misuse, E2 carelessness]

Proc Comt applia	Combust e.g. Oil heat	t ion appliances** (7 er, Gas clothes dryer	9)*** ^{),} - 111			
Home (32)	lome ap	pliances** (32) er, Electric clothes dryer				
articles	Ignition:su	upply fuel without putting out a fire	contact (1), a burst (1)			
Vehicles articles	(引火、引ź (51)	专 火情)	(15), brakes are impossible (3), s operation (2) loss of control (2), Fire(103)			
Persona (25)	Self-igniti	ion:(発火、着火)	ition (4), loss of balance (3),			
Paint (3	(36)					
Kitchen/ (5)	Abnorma	I combustion (16)				
Infant ar	(異常燃烧	モ, 异常燃 烧)				
Leisure	goods (7)	Orbital deviation (3), inserted(2), loss	of balance (1), ignition (1)			
NITE (National Institute of Technology and Evaluation) www.nite.go.jp/index-e.html/						

based on E1 misuse *number

Table 3. Serious Product Accidents* and Top Event Mode [E1 misuse, E2 carelessness] [May 2007 - Jan. 2012]

Product category	Top event mode	Effect
Combustion appliances** (79)***	Ignition (46), self-ignition (16), abnormal combustion (15)	Fire broke (77)
	incomplete combustion (1), skin contact (1)	Others (2)
Home appliances** (32)	Ignition (6), self-ignition (20)	Fire broke (26)
	incomplete combustion (6)	Others (6)
Total (111)		

*NITE (National Institute of Technology and Evaluation) www.nite.go.jp/index-e.html/ **based on E1 misuse ***number

⑥ Failure Mode and Top Event Mode (故障模式与顶事件模式)

"Failure mode" refers to generalized types of unfavorable phenomena or events that may affect system or product components. Failure modes are abstract and general so that they can be used for predicting possible faults.

Ex.) Pipe; cracking, fracturing, and clogging

--- nuclear power plants, drainpipe, blood vessels

"Top Event Mode" refers to events that occur just before critical events or accidents, which effects should be avoided. Top Event Modes are extracted from a sequence of occurrences and generalized and unified so that they can be used to analyze various systems, products, and constructions and generalized and unified so that they can be used to analyze various systems, products, and constructions.

37

Path from Hazard to Effect

Path for Preventing Problems

Temperature Sensor detects the critical temperature

ETA (Event Tree Analysis)

Three Es of Quality Assurance

- 1. Establish "Process" to satisfy customers satisfaction
 - Grasp the needs of costumers and society
 - Develop the products/service based on the needs
 - Establish the process to satisfy customers and society satisfaction
- 2. Execution of the process and Verification & Validation
 - Satisfy the specification and standard
 - Satisfy the needs of costumer and society at Genba
 - Continuously grasping and checking the satisfaction
 - Implement PDCA
- 3. Evidence for the third party
 - Clarify and satisfy the needs of customer and society
 - Make the documents of its contract
 - Show the evidence of them and give the confidence

Fig 2. Verification for Specifications and Validation for Customer Needs Kume, H.(2014), ed. By Kazuyuki Suzuki, New Reliability Handbook, JUSE Press

- [1] Kurihara, Yamamoto, Ishida, and Suzuki (2010) : "Analysis of field lifetime data with a seasonal variation", "15th Reliability and System Safety symposium", pp.72-77.
- [2] Makabe Hajime(2010): "Introduction to reliability engineering", Japanese Standards Association (new edition), pp.238-241.
- [3] Hiraga Takuma, Wataru Yamamoto, Tsutomu Ishida, and Kazuyuki Suzuki (2011): "Analysis of field lifetime data with the seasonal variation considering usage time", 24th autumn reliability symposium of Reliability Engineering Association of Japan, pp.29-32.
- [4] Hitoshi Kume(2004): "Quality Management in New Product Development", Productivity Press.

- [5] Suzuki, K. (2004): "Principle and system of prevention before it happens," JUSE Publishing (translated in Taiwan).
- [6] Suzuki, K. (2008): "A Map for Assurance of Reliability and Safety of Industrial Products," Quality (Journal of the Japanese Society for Quality Control), Vol. 38, No. 4, pp. 9–16.
- [7] Suzuki, K. and Aoki, K. (2009), "Nine Principles for Error Prevention to Avert Safety Problems at Customer Usage Stage," Quality (Journal of the Japanese Society for Quality Control), Vol. 39, No. 4, pp.79–91.
- [8] Hiraga, T., Yamamoto, W. and Suzuki, K. (2014): Nonparametric Modeling and Optimal Maintenance using On-line Monitoring in Environments with Seasonal Variations, International Journal of Performability Engineering, Vol. 10, pp. 83-93.