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Outline 

1. Introduction & Motivation 
2. Examples & Current trends 

– Megavariate SPC in i.i.d. processes 
– Megavariate SPC in processes with autocorrelation 
– Monitoring of higher-order Profiles (1D, 2D, 3D, …) 
– Batch Processes Monitoring (BPM) 

3. Conclusions 
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1920’s 
W.A. Shewhart 

Univariate methods 
(Shewhart, EWMA, CUSUM, etc.) 

1931 
H. Hotelling 

Multivariate methods 
(Hotelling’s T2, MEWMA, MCUSUM) 

1959 
J.E. Jackson 

Megavariate methods 
(MSPC-PCA, -PLS) 

A brief story of …  SPC for large scale 
industrial processes 

 

1995 
Ku et al. 

Megavariate dynamic methods 
(DPCA) 

… end of story? 
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Large Scale 
Process 

Monitoring 

Typology of Large Scale SPC applications 
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Goal 

 

SPC for Large Scale Industrial Processes 
 

– Examples 
– Current trends 
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Topics 

• Megavariate SPC in i.i.d. processes 
 

• Megavariate SPC in processes with autocorrelation 
 

• Monitoring of higher-order Profiles (1D, 2D, 3D, …) 
 

• Batch Processes Monitoring (BPM) 
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         “from correlation-oriented to structured approaches” 
 

• Megavariate statistical process control in electronic devices 
assembling 
 

• Monitoring the process correlated structure incorporating the 
network structure of the system 
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Megavariate SPC in i.i.d. processes 
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Example: 
Megavariate statistical process control in 

electronic devices assembling 
 

9 

Solder Paste Deposits (SPD) 
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The problem 

• 100% inspection of Printed Circuit Boards (PCB’s). 
• Each PCB has more than 3000 deposits (SPD’s) of different shapes. 
• Operators have less than 1 min to decide about the status of each 

PCB. 
• Each solder deposit is evaluates according to 5 parameters obtained 

through Moiré interferometry 
– Volume (V) 
– Area (A) 
– Height (H) 
– Offset in the X coordinate (X) 
– Offset in the Y coordinate (Y) 
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> 15 000 measurements for each PCB! 
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Combined approach 

• Multivariate Statistical Process Control using Principal 
Components Analysis (PCA-MSPC*) 

* J.E. Jackson, Technometrics, 1:4 (1959) 359-377.  
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• Analysis of the residuals from the projection of each multivariate observation to 
the PCA subspace. 

SECOND LEVEL OF DETECTION 
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RESULTS FOR THE FIRST LEVEL OF DETECTION 

Detection 
Statistics 

Measurements used to compute the relative area under the ROC curve 
(values in %)  

Height (H) Area (A) Volume (V) Offset X Offset Y Combined 
approach 

 
T2 

 
70.00 

 
62.50 

 
85.63 

 
76.88 

 
70.63 

 
90.00 

 
Q 

 
93.13 

 
93.75 

 
91.88 

 
85.00 

 
83.13 

 
90.63 

10 PCB’s classified as “good” were used to represent NOC data in SPC (estimate the PCA subspace, …) 
16 PCB’s classified as “fail” (16) and “good” (5) were used to  test the procedure 
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RESULTS FOR THE SECOND LEVEL OF DETECTION 

Detection 
Statistics 

Measurements used to identify abnormal SPD’s  
(values in %)  

Height (H) Area (A) Volume (V) Offset X Offset Y Combined 
approach 

 
Mean 

 
80.33 

 
65.82 

 
76.04 

 
60.23 

 
54.38 

 
72.47 

 
Standard 
Deviation 

 
20.07 

 
29.97 

 
21.02 

 
21.23 

 
29.93 

 
17.31 

Reis, M.S. and P. Delgado, A large-scale statistical process control 
approach for the monitoring of electronic devices assemblage. Computers 

and Chemical Engineering, 2012. 39: p. 163-169. 
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Emerging trend 

• Most MSPC schemes are focused on location (mean level); 
• Current MSPC procedures for multivariate dispersion are 

based on marginal covariance: 
– Likelihood ratio test; 
– Generalized variance; 
– PCA-MSPC. 

• These methods are unable, by design, to discern local 
changes in the process fine structure; 

• Current approaches do not consider the underlying process 
causal structure 
– Detection 
– Diagnosis 
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Methods: 
Sensitivity enhancing transformation (SET) 

3
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1. Network 
 Identification 

2. Regress each variable 
 onto its parents 

3. Final model 

4. Apply the Cholesky 
decomposition to the 
regression residuals 
thus obtained. 
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Methods 

Process Data 

SET 

Uncorrelated data 

Monitoring 
statistics 
(PC, etc.) 

Statistics 

MSPC 

Process State 
(Normal / Abnormal) 
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Rato, T.J. and M.S. Reis, Sensitivity enhancing transformations for monitoring the 
process correlation structure. Journal of Process Control, 2014. 24: p. 905-915. 

 
Rato, T.J. and M.S. Reis, On-line process monitoring using local measures of 

association. Part I: Detection performance. Chemometrics and Intelligent 
Laboratory Systems, 2015. 142: p. 255-264. 
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Megavariate SPC in processes with 
autocorrelation 

• Multiscale statistical process control (MS-SPC) 
 

• Megavariate SPC in processes with autocorrelation 
 

 

20 
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Multiscale SPC 
• Process data usually presents cross-correlation and 

autocorrelation 

PCA WT 

X1    X2    X3   X4 

Time 
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Confirmation stage 

Feature extraction stage 

MS-SPC 

WTX

aJ

dJ

dJ-1

d1

PCA-MSPC

PCA-MSPC

PCA-MSPC

PCA-MSPC

IWT Xrec PCA-MSPC

(…)

T2(Xrec)
Q(Xrec)

WTX

aJ

dJ

dJ-1

d1

PCA-MSPC

PCA-MSPC

PCA-MSPC

PCA-MSPC

IWT Xrec PCA-MSPCPCA-MSPC

(…)

T2(Xrec)
Q(Xrec)

Bakshi BR. Multiscale PCA with Application to Multivariate Statistical Process Control. 
AIChE Journal. 1998;44(7):1596-1610 
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Some useful features of MSSPC 

• Good performance for a wide variety of signals 
– Subsume other single-scale methods according to the scales selected!  

 

• More adequate for detecting unknown disturbances, 
especially those with complex patterns 
 

• Handles autocorrelation in a natural way 
– Wavelet coefficients are approximately uncorrelated and normal 

distributed. 
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Some Results: ROC studies 

• Perturbation: Furnace Feed Disturbance 
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(1-Specificity) 

TPR 
(Sensitivity) 

0,9

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0,99

1

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

PCA-MSPC
WP-MSSPC (D)
WP-MSSPC (I)



University of Coimbra   ●    Department of Chemical Engineering World Quality Forum Budapest, Hungary: 26-27 October 2015  

Example: 
Dynamic PCA with Decorrelated Residuals: DPCA-DR 

 (Rato & Reis) 

26 
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Tennessee Eastman process 

27 
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Tennessee Eastman process 

Rato, T.J. and M.S. Reis, Fault detection in the Tennessee Eastman process using dynamic principal components analysis with decorrelated 
residuals (DPCA-DR). Chemometrics and Intelligent Laboratory Systems, 2013. 125: p. 101-108. 
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Monitoring Profiles (1D, 2D, 3D, …) 

29 

“(…) We view the monitoring of process and 

product profiles as the most promising area of 

research in statistical process control. (…)” 

 

 

Woodall, W. H., Spitzner, D. J., Montgomery, D. C., and Gupta, S. (2004). Using Control Charts to Monitor 

Process and Product Quality Profiles. Journal of Quality Technology, 36(3), 309-320. 
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• Definition [Profile, P]: 
 
An array of data, indexed by time and/or space, that characterizes a given 

entity (product, process). 
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Monitoring paper surface: 
Formation* (Reis, MS & Bauer, A.) 

32 

* Level of uniformity in the way fibres are distributed across the paper surface. 

• Currently is evaluated off-line: few times per day (e.g. after 
each paper reel production) 
– Very high delay, regarding the production speed of current paper 

machines (~100 Km/h!) 
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Goal 

 
 

Develop a technology for 
 on-line monitoring of  the paper formation. 
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Experimental: Measurement Sensor 

Housing with a 
rotating head 

Light source 

Digital camera 
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Experimental 1:1
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Methods 
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• PCA analysis of wavelet signatures 
Results (RQ1) 
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Results (RQ1) 

• Prototypes of clusters 2A and 2B 

  

2A – heterogeneity through 
smaller and more frequent 
irregularities. 

2B -  “cloudy” texture. 
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Batch Process Monitoring (BPM) 

• Challenges in Batch Processes Monitoring (BPM) 
 
 

43 
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Example: 
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Scope & Motivation 

• Batch processes 
– Widely used in industry (high added-value specialties, but also 

commodities) 
• Semiconductor (~s, min) 
• Chemical and Petrochemical (~hr) 
• Pharmaceutical (~days) 
• Food & Drinks (~hr, weeks, years) 
• (…) 

 
– Flexible (multipurpose, many degrees of freedom for intervention, 

scalable to different production ranges) 

45 
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Scope & Motivation 

• Many Batch Process Monitoring (BPM) methods and variants have 
been proposed: 
– 2-Way 

• Batch-Wise unfolding (Nomikos & MacGregor, 1994, 1995) 
• Variable-Wise unfolding (Wold et al., 1987, 1998) 

–  3-Way  
• PARAFAC (Bro, 1997; Westerhuis et al., 1999) 
• TUCKER3 (Geladi, 1989; Louwerse & Smilde, 2000) 

– Dynamic  
• ARPCA (Choi et al., 2008) 
• BDPCA (Chen & Liu, 2002) 

– Hierarchical (Rännar, MacGregor & Wold, 1998) 
– Local, Evolving (Ramaker et al., 2005) 
– Kernel methods (Lee, J.-M. et al., 2004; Jia et al., 2010) 
– Multiscale (Rato et al., 2015) 
– (…)  

47 
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Case study: SEMIEX 
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SPC in the big data era 

50 

Big Data 
 
 

Data 

Technology Analytics 
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Conclusions 

• 90+ years after its introduction, SPC is still an exciting and 
evolving field! 

• SPC should be complemented with effective Diagnosis tools 
• New challenges include 

– Handling complex dynamics: multiscale methods 
– Integrating the structure of the system and existing domain 

knowledge: SET, Bayesian methods  
– Handling multiple data structures (profiles): multi-block methods 

 
  and … making everything simple to use and robust! 
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