Motto: We trust God, everything else must be validated (an inspector)

Computer System Verification and Validation in the Pharmaceutical Industry

by Lajos Kovács

World Quality Forum of the International Academy for Quality (IAQ) "Quality for Future of the World" Budapest October 26 to 27, 2015

Contents

General Principles and Terminology

V&V Elements and Ways

Risk assessment in V&V

Challenges and Responses

General Principles

>The purpose of the GxP quality guidelines:

- to ensure a product is safe and meets its intended use,
- fits current compliance and regulatory requirements and
- built upon existing industry good practice in an efficient and effective manner.
- >Key Aspects:
 - Safety (e.g. patients)
 - Quality of Products
 - Security, Reliability and Integrity
 - Traceability and Transparency (e.g Documented processes, evidence and activities)
 - Risks (mgt.)

GxP is a general term for Good (Anything...) Practice quality guidelines and regulations (e.g Good Manufacturing Practice) Sources: General Principles of Software Validation; Final Guidance for Industry and FDA Staff January 11, 2002 FDA: Food and Drug Administration

US Food & Drug Administration - Code of Federal Regulations, Title 21, part 11: "Electronic Records; Electronic Signatures; Final Rule"

Definition and Terminology of V&V 1

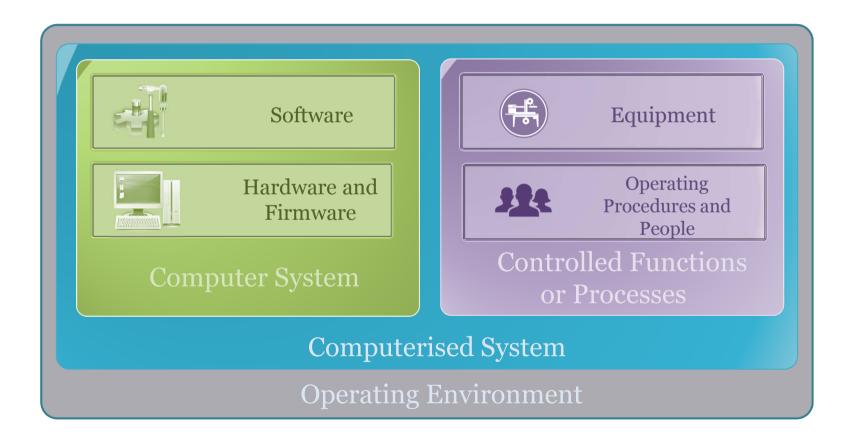
"Software verification provides objective evidence that the design outputs of a particular phase of the software development life cycle meet all of the specified requirements for that phase." It is a developer's conceptual aspect and practice of verifying documents, design, code and program. "Software validation confirmation by examination and provision of objective evidence that software specifications conform to user needs and intended uses, and that the particular requirements implemented through software can be consistently fulfilled.

Definition of Validation

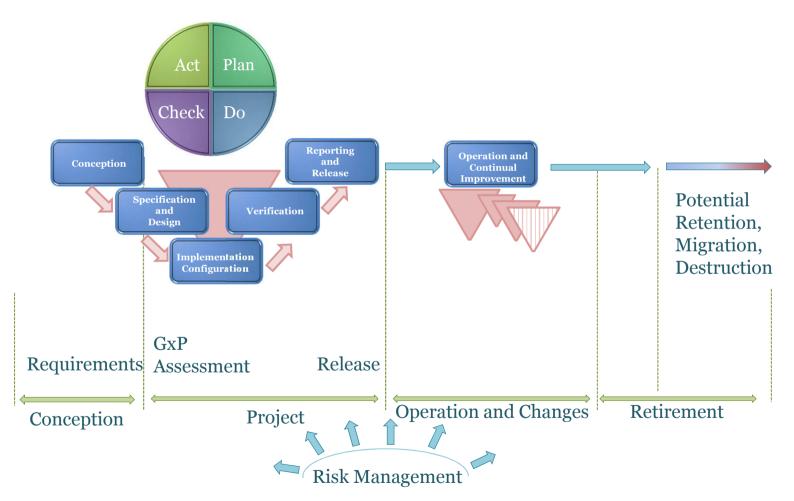
Evaluates the developed system, whether it meets the specified customer expectations and requirements and answers the questions:

>Are we building the appropriate product?

Does the software meet the user requirements and/or customer expectations?

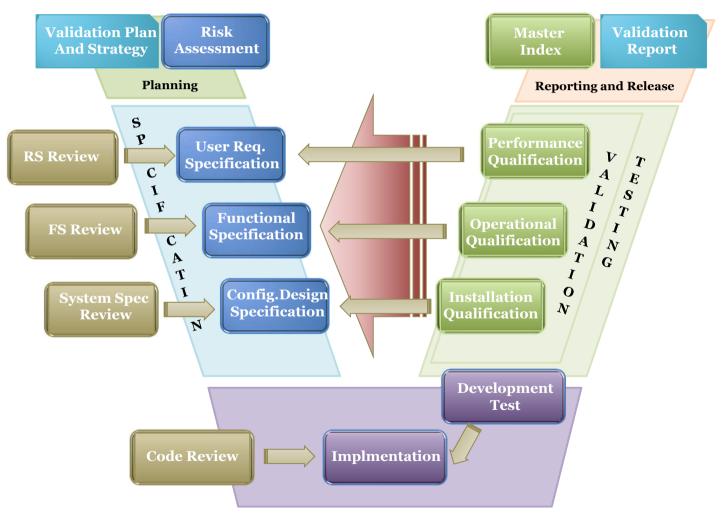

Definition of Verification

Determine whether the products of a particular development phase meet the specified requirements to start that phase (e.g specifications, code, app. function) and answers the questions:


Are we building the product appropriately (in the right way)?

Must the software conform to its specifications?

Elements of the Computerised System


Computerised System Life Cycle

Source:

ISPE Headquarters GAMP 5 A Risk-based Approach to Compliant Gxp Computerized Systems 2008, Figure 3.2: Life Cycle Phases

V Model Concept

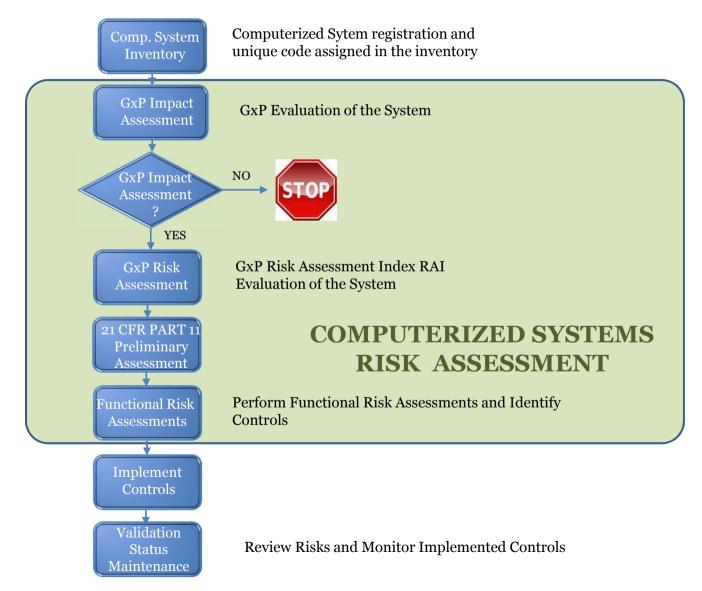
Risk Management

Goal of Risk Management
Identify potential problems before they occur
Manage risk-handling activities

Scopes:

Project and Business

Business, Resources (HR, Financial, Technical etc.)

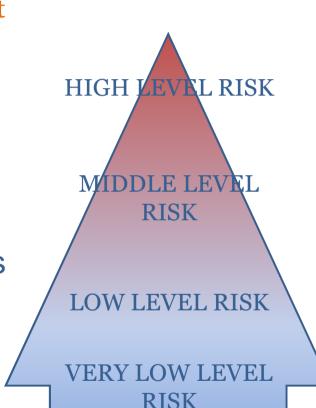

>GxP System Risk (Validation Risk mgt.)

Risk Impact Assessment

Detailed Risk Analysis (e.g Functional RAI)

Risk Control Implementation and Monitoring

Key Steps of Validation Strategy



GAMP 5 Software Categories

Classification is a built-in risk assessment

- Category 5: Custom applications Software custom designed and coded to suit the business process
- Category 4: Configured products LIMS, EDMS, ERP, Spreadsheets, etc
- Category 3: Nonconfigured products Firmware-based sw, Commercial-Off-the-Shelf (COTS) software
- Category 1: Infrastructure Software Operating Systems, Network monitoring tools etc.

GAMP: Good Automated Manufacturing Practice Forum was founded in 1991 and partnered with the International Society for Pharmaceutical Engineering (ISPE) to publish the GAMP guidelines GAMP guide version 5, that was released in March 2008 and Category 2 (Firmware) discontinued

GxP System Risk Assessment 1

>GxP Impact Assessment

evaluating the potential impact of the System on the GxP processes on key areas (e.g. MES, LAS etc.)

>GxP System Risk Assessment

- Effort should be focused on high risks
- The risks identified and documented on three levels in two dimensions (e.g. Criticality and Complexity)
- Detailed Risk Assessment
 - Process and/or Functional Risk Analysis
 - Through the Specification and Design phases

Risk control recommendations are needed

GxP System Risk Assessment 2

RAI vs. Deliverable Documents

GxP Impact Assessment

GXF Impact Assessment							Does the sys	#	DELIVERABLES	-	RAI			
			Verify if the Computeri				that may hav. Does the sys	#		LOW	MEDIUM	HIGH		
GxP System		0							PREPARATION					
		₽		the following				or reject proc	1	Supplier Evaluation	0	•	•	
							Does the Co	2	Validation Plan	•	•	•		
	COMPLEXITY				ol or	alit	regulated El	3	Risk Analysis	•	•	•		
					jual		Record)?	SPECIFICATION						
					ice		Does the Co	4	Requirements	•	•	•		
						- 1		Regulated E Has the cont	5	Functional		_	_	
		HIG	н	MEDIUM	LOW	n pr		perform oper	5	Specifications	0	0	•	
CRITICALITY	HIGH	HIG	н	HIGH	MEDIUM	the		Has the cont	6	Configuration Specifications	0	•	•	
	MEDIUM					1 Sy		perform oper	7	Design Specifications	0	0	•	
<u>0</u>		HIG	н	MEDIUM	LOW	s an					TING	• •		
LIN I								The System checks	8	Functional Risk Analysis	0	•	•	
0	LOW	MEDI	ОМ	LOW	LOW	upp		Does the Co	10	Installation	•		•	
Does the system includes a						external critic		Qualification	•	•	-			
	N		to have documented				Does the Co	11	Operational Qualification	0	•	•		
	NUMBER OF POSIT							calculations/	12	Performance Qualification	•	•	•	
						Complexity	Is the Comp	ACCEPTANCE						
ANSWERS			COMPLEXITY			GxP li	<u> </u>	regulated en	13	Traceability Matrix	٠	٠	•	
	0.2			1				Can be the C user requirer	14	Validation Report	•	•	•	
	0-2			Low			· ·	15		0	0	•		
	3-4			Medium				Does the Co		ON GOING				
								components_		SOP Security SOP Change	•	•	•	
	5-6			High					17	Control	•	•	•	
									18	SOP Backup and Recovery	•	•	•	
									19	SOP Periodic Review	٠	•	•	

Answers

YES/NO

Questions

Challenges

High standards and expectations of business and authorities Reducing Risks Reducing validation time, cost and effort \rightarrow Be green (GMP =<> Giant Mass of Paper) Change Control Application of new technologies and techniques

Response to the Challenges

Low Hanging Fruits

- Cover-all Risk-based approach
- Off-the-shelf solutions with customisation possibilities and applied preconfigured industry best practices
- Predefined processes and templates
- Industry best practices
- > Tools

 Cloud-based services (e.g SaaS, IaaS)
Combined-techniques (e.g. Prototyping + Waterfall)

New paradigms (e.g. RAD, AGILE)

Source: Gartner Hype Cycle for Life Sciences, 2015

Conclusion

≻The V&V:

> Much more than testing

Improves quality assurance

The risk-based approach is crucial

> Team-oriented, documented activities

> New trends and paradigms can be seen for improvement

Thank you very much for your attention!

E-mail: Kovacs.lajos@egis.hu Linkedin profile: hu.linkedin.com/pub/lajos-kovács/19/b10/b61/